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Abstract 
 

The conduction mechanisms of metal evaporated tunnel junctions are 
examined for applied electric field frequencies from RF to the visible. 
For optical frequencies, responses were measured when a laser source 
directly illuminated the junction. Responses of both normal and 
superconducting junctions were measured. 
 

In the metal-oxide-metal junction, two frequency dependent regimes 
of conductivity exist. At RF, where the frequency is smaller than the 
junction's (RC)-1 the conduction scheme is electron tunneling. At photon 
energies in the range of the tunnel barrier height the conduction scheme 
is photo-induced tunneling. Expressions for the tunnel barrier parameters 
(width, height, and asymmetry factor) in terms of the RF rectified 
response are derived from the tunneling formalism. It is shown that the 
tunnel current, for photo-induced tunneling, is a function of the barrier 
shape through the energy dependent tunneling probability function. 
Tunneling theory is used to derive the photocurrents, as a function of 
incident photon energy, for different barrier shapes; square, trapezoidal, 
parabolic, and image force lowered. Estimates of barrier shapes for three 
junctions (Al-Mg, Al-Al, and Mg-Mg) were obtained by matching measured 
photocurrents to those calculated from the barrier models. Barrier 
parameters obtained from RF rectification measurements were used as bounds 
for the barrier models.  

 
Responses to optical fields of the Al-Pb, metal-oxide-

superconducting junction were found to be of two types; the thermal, or 
heating response, and a rectification-like response. The nonthermal 
responses were found to be independent of radiation frequency, and closely 
resemble the RF rectified response of the junction. Examination of the 
nonthermal response characteristics shows that rectification at optical 
frequencies does not occur. A conduction scheme based on a laser-induced 
nonequilibrium electron distribution in the superconductor 
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is presented. This model is an extension of a recently proposed 
model explaining the conduction scheme in superconductor-
superconductor junctions. The model proposes that a population 
inversion of electrons and holes exists about the edges of the 
superconducting gap when the laser illuminates the junction. 
The response of the junction, as a function of bias, changes 
sign at Vb = ∆Pb/e, resembling the rectification response.  
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Introduction and Summary 

 

In 1967 the first optical frequency mixing experiment was 

performed using a high speed adaptation of a microwave 

rectifying diode; a metal-dielectric-semiconductor point 

contact diode.1  This point contact diode was formed by 

electrochemically etching a thin metal wire, forming a very 

small point, and lightly contacting this point to the surface 

of a flat semiconductor. Current flowed through the contact 

region as a nonlinear function of the electric potential 

applied across it. This element successfully generated 

harmonics of microwave radiation mixing them with 337µm 
radiation. This worked because the whole capacitor-like 

junction could oscillate at these frequencies. 

 

As the frequency of the radiation was increased above 

about 85µm it became apparent that the current in the 
semiconductor had a high frequency limit due to the relatively 

large free carrier response time. A polished metal post was 

subsequently substituted for the semiconductor.2 Infrared 

frequency mixing experiments using this metal-metal oxide- 

metal (M-0-M) diode confirmed that the response time was very 

short, approaching the RC time constant set by resistance and 

capacitance, or area of contact. This M-0-M point contact diode 

has proven its ability to mix infrared frequencies as high as 

1.5µm,3 allowing direct and accurate frequency measurements of 
many laser transitions.  
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Despite the impressive performance of this device, its 

instability against vibration has partly prompted a search for 

a new geometry to replace it. The natural choice as a 

substitute for the point contact diode is the metal evaporated 

tunnel junction. This is, effectively, a small capacitor formed 

by evaporating a thin metal film onto substrate, oxidizing it, 

and sandwiching this oxide dielectric by overlapping with a 

second metal film. The shape usually resembles a cross, 

although other geometries have been formed.4 The oxide thickness 

must be small enough to permit electrons to tunnel through it.  

 

Several investigators have studied the response to 

electric fields of these metal evaporated junctions at low 

frequencies, where the junction (RC)-1 was about that of the 

radiation frequency, and at higher frequencies.5,6-9 The hope in 

most of these investigations was that the conduction mechanism 

in the evaporated junction be the same as that of the point 

contact diode, being high frequency rectification. Most of 

these investigations were performed on M-0-M junctions at 

temperatures above 77K. 

 

The possibility of using these junctions as detectors of 

infrared and visible radiations has led to the study described 

in this thesis. Junctions having both normal and 

superconducting electrodes were studied at incident electric 

field frequencies from radio frequency (RF) to the visible. The 

metal-oxide-superconductor (M-0-S) junction response to  
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RF is seen to be caused by the same conduction mechanism 

exhibited in the M-0-M junction at this frequency, namely, 

rectification from electron tunneling. At higher frequencies, 

however, the conduction processes in these junctions are much 

different. 

 

The theory of elastic electron tunneling was applied to 

rectification data obtained from several M-0-M junctions to 

determine their barrier parameters; the barrier width, L, 

average height, φ, and an asymmetry parameter, ∆φ. Three 
junctions, Al-Al203-Al, Al-Al203-Mg, and Mg-MgO-Mg, exhibited 

small average barrier heights ranging from 1.97eV to 2.8eV. 

This method of obtaining the barrier parameters was found to be 

a convenient and versatile tool. 

 

While the low frequency response is governed by electron 

tunneling through the oxide potential barrier in M-0-M 

junctions, at large enough photon energies the response was 

found to be caused by photo-induced tunneling. The photo- 

current is determined by the transition probability across the 

barrier as a function of energy. Plots of incident photon 

energy versus photocurrent revealed a rapidly decaying 

photocurrent as hν decreased below the barrier height. The 
shape of this plot is related to the shape of the potential 

barrier near the top through the penetration probability. 

 

The photoresponse of three junctions exhibiting low 

barrier heights (Al-Al, Al-Mg, and Mg-Mg, discussed above)  
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was measured using photon energies from 2.04eV to 2.73eV Fowler 

plots were used to determine a maximum height, φ2. A model of 
photo-induced tunneling was applied to both the measured 

photoresponse data and barrier parameters of each junction to 

characterize the actual tunnel barrier shape. To facilitate the 

calculation, probability functions for several model barrier 

shapes were used to calculate the expected photocurrent, using 

as constraints the measured barrier parameters, L, φ, ∆φ, and 
φ2. The barrier models were those that gave analytic expressions 
for the tunneling probability as a function of energy. These 

are the square, parabolic, and trapezoidal barriers, and 

Simmon's image force lowered barrier, approximating a region 

near the top as parabola. 

 

It was found that specific barrier shapes led to 

calculated photocurrents matching closely the measurements 

taken from the Al-Mg and Al-Al junctions. Other barrier shapes 

conforming to the measured quantities L, φ, ∆φ, and φ2 did not 
predict the observed photocurrents, confirming that the shape 

of the barrier determines the junction's characteristic 

response to radiation energies greater than φ. In the Mg-Mg 
junction, the calculated photocurrent was independent of the 

barrier shape for the optical energies used. This is described 

by the electron tunneling model, which states that for energies 

less than φ (which is the case for  
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the Mg-Mg junction) the tunneling probability function is 

determined by φ and not φ(x), the barrier shape near the top. 
The observed agreement of the barrier parameters to the photo-

induced tunneling data confirms that the barrier parameters 

found at low frequencies are the same ones determining 

tunneling properties of the junction at visible frequencies.  

 

The M-0-S junction responses to optical fields were found 

to be of two broad types; thermal or heating, and non-

equilibrium.10 Thermal and non-equilibrium here refer to the 

electron distributions within the junction electrodes in the 

presence of the optical field. It was found that response 

versus bias curves for infrared and visible frequencies closely 

resemble the rectification response of the same junction. 

Optical rectification was excluded as the conduction mechanism, 

for the response was found to exist when the laser illuminated 

an optically opaque electrode. The opaque electrode blocked the 

electric field from reaching the barrier. A new conduction 

mechanism is proposed, based on recent work performed using S-

0-S junctions. It is proposed that an inversion of empty states 

and filled states in the superconductor is established at the 

edges of the superconducting gap. Electron excitation is 

facilitated by phonons generated in the normal metal side by 

laser radiation. The filled states at the top of the 

superconducting gap, called blocking states, are responsible 

for rectification-like appearance of the response versus bias. 
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This presentation has two major sections: First, the M-0-M 

junction response to electromagnetic fields is presented in 

Chapters 1 and 3. In Chapter 1, a background theoretical 

development of both the rectification and photo-emission 

processes is given. Typical junction responses resulting from 

these processes are also given including an example calculation 

of barrier parameters of an Al-Al junction. Chapter 3 discusses 

the methods of obtaining the barrier shape from photo-induced 

currents. First, the generalized treatment of photo-induced 

tunneling given in Chapter 1 is specified for the four model 

barrier shapes. Then, photo-currents predicted by these models 

are compared to the measured values for the Al-Mg, Al-Al, and 

Mg-Mg, M-0-M junctions. The fit is analyzed and a prediction of 

the barrier shape is made for each junction. Chapter 2 

describes the experimental arrangement used to measure both the 

M-0-M and M-0-S junctions responses. 

 

The second section describes the superconducting junction 

response to electromagnetic fields, and is contained in Chapter 

4. In the first section the rectification response is 

discussed. This is followed by an analysis of the thermal 

response, and finally the non-equilibrium, rectification-like 

response in the remaining two sections. 


